
1

Accelerating Time-to-Market

with Continuous Integration

for FPGA Design
The unique adaptability of FPGAs allows innovators to be at the

forefront of technology. They provide crucial first-mover

advantage over Application Specific Integrated Circuits (ASICs) by

requiring no manufacturing lead time. Recent advances in scale

and System on Chip (SoC) designs are also now allowing FPGAs to

compete against CPU and GPU technology. As FPGA architecture

has increased in resources and complexity, so too has the

required hardware development effort.

FPGA designs coded at the Register Transfer Level (RTL) have

increased from thousands of lines to hundreds of thousands of

lines, requiring more development time to get a product to

market. In response, high-level tools that make designing for

FPGAs accessible to many developers, such as software

developers, have been released. Adopting high-level tools is not

enough to overcome this development challenge alone – a

framework for automating the development process is also

needed to ensure high quality testing with fast releases.

By adopting Continuous Integration (CI)/ Continuous Deployment

(CD), FPGA developers can accelerate their time to market, even

as the complexity of their systems grow. This whitepaper will

explore how adopting CI/CD leads to higher quality, more

predictable releases. It will also show how CI/CD reduces

communication overhead and keeps teams integrated and

efficient. CI/CD also provides benefits to the individual developer

by reducing the need for them to maintain their own developer

environments and instead, focus on exploring the design space.

As a case study, a computer-vision based colour detection system

is provided, which shows how the project may be fully automated

into a single workflow. We believe that through the automation

that CI/CD provides, the FPGA design process can be accelerated

and the final design to be delivered to market rapidly.

2

The need for design process productivity
In the early days of FPGAs, they were often limited to

glue logic or implementing different IO standards for

embedded markets. FPGAs then began increasing in

resources, complexity and speed, reducing power

consumption, thereby opening them up to new

applications. They began becoming a viable alternative

to ASICs, as they were able to provide the required

performance, whilst reducing the number of verification

steps and having no manufacturing lead times. This

makes FPGAs appealing in time-to-market critical

applications, where any time lost leads to significant loss

of sales.

More recently FPGAs are being used in preference over

CPU and GPU technology for high speed applications as

modern FPGAs can provide tenfold performance over

CPUs and offer low performance per Watt compared to

GPUs. However, many developers in these markets are

still hesitant to use FPGAs, due to the large development

times compared to CPUs and GPUs.

For FPGA applications to be competitive, the time taken

for development must become comparable to CPUs and

GPUs. Yet, as FPGAs become more advanced,

development times are at risk of rising. When FPGA

designs were small in scope, design and verification

hardware engineers could efficiently design novel

solutions at the Register Transfer Level (RTL), using

languages such as Verilog or VHDL. Bit and cycle

accurate hardware simulation speeds have always been

slow to capture, but designers were able to effectively

debug by tracing a few critical signals. As FPGA designs

increase from thousands of lines of RTL code to

hundreds of thousands, far more development time

must be spent on implementation details. Systems may

now consist of tens of modules, making it unrealistic for

small teams of hardware engineers to rapidly design and

debug every individual module. These modules must all

be integrated into the system once they are complete.

This integration requires large amounts of time devoted

to debugging interfacing and communication.

The effect of this increasing complexity is that designers

spend less time exploring the design space and novel

solutions. Instead, they are forced to implement the fine

details of a single design. If this trend continues,

developers will need to either lengthen development

time and sacrifice time-to-market advantage, or settle

for less optimal designs, potentially harming the

performance benefits of using FPGAs.

This has created a push for FPGA design process to

adopt more modern, high-level productive methods that

allow designers more time to work on value-added

solutions. We have seen innovation in FPGA toolsets

that are focused on making FPGA designs far more

accessible to all types of developers, not only those

skilled in RTL. For instance, new High Level Synthesis

(HLS) tools allow software developers to program FPGA

designs in C/C++. These new tools allow for a far more

diverse and modern development force that can

effectively explore the design space of complex systems.

New toolsets alone are not enough to overcome these

development challenges. Diverse teams need to be able

to coordinate with each other to build a system.

Moreover, a system must be tested from the RTL level to

the final software application, to guarantee correct

functionality. To solve the problems faced by adopting

high-level tools, FPGA designs must also be developed

using modern software development practises. We

believe that Continuous Integration and Continuous

Development practices present the solution to reducing

development time, whilst ensuring novel, innovative

designs are created on schedule.

Decreasing time-to-market through CI/CD

practises

Higher quality, more predictable releases
CI is the practise of teams making continuous,

incremental changes to a FPGA design’s code base,

thereby providing higher quality, more predictable

releases. Code is automatically and frequently built and

tested to ensure high quality, bug-free systems. To

achieve this, the code base is worked on simultaneously

and regularly updated by all members of the team,

sometimes as often as multiple times a day. Version

controls systems, such as Git are mandatory for

managing these changes. The entire system then

undergoes a series of builds and tests known as a

workflow. Since tests are a crucial part of CI, developers

must keep tests up-to-date and constantly add tests as

an application progresses. This provides higher quality

releases than when testing is left till the end of

development.

CD is the natural extension of CI that ensures that at the

end of the workflow, the product is ready to be

deployed to customers. CD prevents backloading system

integration to the end of development, where system-

level bugs can become time consuming to fix. Instead,

CD ensures that risk is spread more evenly as system

progress is far easier to track.

3

Figure 1 provides an overview of a simple CI system for

FPGA design. In this overview, developers contribute

code to a single codebase held in Git. An automated

system will then pull code from Git and build the system,

beginning with the hardware and ending at the software

application. Once the system has been built, it is tested

through hardware emulation that runs RTL at a cycle-

accurate level. We also test through software emulation

that provides fast results for our software application.

Finally, we test the entire system through placing the

design on hardware itself. If all our tests succeed, we

then package our build, ready for deployment.

Automating these workflows, such as those in Figure 1,

requires a CI/CD ecosystem made of one or more tools.

Figure 2 demonstrates the typical infrastructure needed

for CI/CD, split into four distinct modules:

• Repository: The code repository is a version

control system that all developers submit their

code to. The repository will track any changes

made to the source code and submit any

significant events to the orchestration software.

Typical events include any committed changes

to the code. Most used is the open-source Git,

which has several hosts, such as Github, Gitlab

or Bitbucket.

• Orchestration software: The orchestration

software organises the CI/CD workflows. They

setup when, where and in what order builds and

tests must occur in through user-created

configuration files. Orchestration software will

also manage sending tasks to the execution

server to run the builds and tests. It will also

typically manage where the builds are stored

after they have been run. Popular examples of

Orchestration Software include CircleCI,

TeamCity and Jenkins.

• Execution server: The execution server is

responsible for running the builds and tests.

These run the code in a clean environment that

contains only the tools needed to run the

software. They receive instruction from the

orchestration software and constantly update it

with the status of the build. Once the build is

finished, the files are transferred over to the

orchestration software for long-term storage.

Most orchestration software will come pre-

packaged with cloud-based execution servers,

such as CircleCI, but many will also allow users

to set up their on-premise servers as execution

servers.

• Deploy: The resulting output of each build is

known as an artifact, and if that artifact passes

tests, it is ready to be deployed. The method of

deployment varies heavily, depending on a

range of factors, such as if we are deploying to

servers or to embedded devices. Server

deployments may take advantage of popular

container orchestration servers such as

Kubernetes, whereas embedded services can

utilise over-the-air updates.

There are numerous tools and methods for creating a

CI/CD infrastructure from completely on-premise, open-

source solutions such as Jenkins with Docker to more

cloud-based solutions such as Github Actions or Amazon

Figure 1

An overview of how a CI system functions. Developers contribute to a version control system such as GitHub.

When a change to the code is pushed, the system is built. The system is tested through emulation and hardware

tests, alerting the user to test and performance results. Afterwards, files are made ready for download to deploy

in production.

4

Web Services. The right CI/CD for an organisation will

depend on both practical and cultural considerations.

For instance, more security-minded teams may need a

completely on-premise solution that is functional with

no connection to the internet, whereas more cost-

conscious teams may chose a hybrid solution, where

they have a baseline amount of on-premise servers, but

use the cloud during the small periods of time when

they require more computational speeds.

By choosing the right infrastructure, a team can

automate their workflows for any application they work

on. Workflows allow developers to regularly commit

their code and have it built and tested to debug errors

fast. Through CI/CD, developers take a more holistic

view of the entire system. Instead of waiting till the last

stage to put together an entire system, the system

should always be ready for deployment. This helps

spread risk evenly through a project and keeps tests

regular and up to date.

Teams are better co-ordinated and more effective
CI means fostering a team culture where everyone

contributes to single effort. Without CI, developers will

naturally work in a silo where they focus on their own

modules and only coordinate with one another when

integrating their modules. This creates a communication

overhead as project management must manually track

each developer’s progress and estimate how that fits

into the overall system.

As FPGA teams diversify, this coordination becomes

more difficult as FPGAs are no longer limited to

hardware engineers. New FPGA tools allow for a far

more diverse and modern development force that can

effectively explore the design space of complex systems.

Examples of these new developers include:

• Hardware design and verification engineers: In

modern FPGA development, hardware

engineers are responsible for creating a

hardware shell to allow other developers to

build the system within. These shells tend to

focus on the design interfaces, IO and

connectivity. By being able to provide this shell,

hardware engineers can offload much of the

work they previously had to do onto the system

itself.

• Software developers: Much of the hardware

developers’ work can now be handled by

software developers using High Level Synthesis

(HLS) tools. Software developers can develop

hardware-accelerated code at much faster rates,

using the languages they are familiar with such

as Python, C and OpenCL. This allows for better

design space exploration, reaching more novel

solutions within a limited development period.

• Firmware developers: Modern FPGAs will often

be combined with an on-chip CPU to form a

System on Chip (SoC). These SoCs can run

Operating Systems (OS), such as RTOS and Linux.

Using OS is a requirement in most modern

systems. Firmware developers handle the

installation of these OS as well as any needed

programs or drivers.

• Data Scientists: Most recently, FPGA designs can

accelerate AI models developed using popular

Figure 2

An overview of CI/CD infrastructure. Developer code is held in a repository and when a significant event occurs,

such as new code being committed, an event signal is sent to Orchestration Software. Orchestration Software is

responsible for the coordination of the workflows and will typically schedule tasks such as build and tests to run on

an execution server. Once tests have been passed, the design is ready for deployment. The deployment mechanism

will vary depending on environment. For servers, this will typically involve uploading bitstreams, whilst embedded

environments will be more focused on flashing images.

5

Open-Source tools, such as TensorFlow and

PyTorch. Data Scientists can convert their pre-

existing models onto FPGAs and enjoy high-

performance inference of their models.

Figure 3 shows the entire software stack for a solution.

Keeping organised at all levels is a difficult task. For

instance, data scientists are reliant on AI modules that

provide an API that can run their models. This hardware

needs to be integrated as soon as possible. This requires

a co-ordinated effort for the hardware team to move

the latest build through approval. Firmware and

software developers can automate their approval

process before the design is usable to the data

scientists. CI makes managing these relationships far

easier through automation.

Figure 4 demonstrates how CI can synchronise

developers together. In this example, the hardware

engineer commits their code to a Git repository that is

then built and tested. If the tests sucessfully pass, the

resulting platform becomes an artifact which is then

stored in the aritifact store. A data scientist in the team

may then use this platform as the basis of their

applications. The advantage of this system is that it

removes out-of-sync communication between the data

scientist or any member of the team. The builds and

tests can be set up to ensure that the platform

automatically applies the firmware and software

kernels, and ensures correct functionality. In essence,

the artifact store forms a single source of truth for all

succesful builds, packages or binaries. Teams are able to

quickly coordinate, monitor tests and download any

needed files from a single source. Other advantages of

the artifact store include:

• Scalability: FPGA designs produce large files that

can fill developers’ local environments, forcing

the deletion of data. Artifact stores present a

long-term storage solution that can scale up as

more data is needed to be stored. Team-wide

data policy is enforcable, such as only deleting

data if it is more than a month old.

• Security: By a having a single source of data that

is immediately relevant to a solution, it is simple

to back-up and restore data.

The artifact store presents a way of keeping the team

synchronised, providing files as they are needed. This is

required in modern FPGA designs as teams are

becoming more diverse, embracing a larger stack that

starts from hardware developers and continues on to

data scientists making use of accelerated software

kernels to develop applications. Through CI, FPGA design

teams can keep efficient, whilst also fostering a co-

operative, shared environment.

Individual developers are far more efficient
One of the greatest bottlenecks for FPGA developers is

managing their builds and tests, especially if they wish to

automate tasks or run multiple tests in parallel. CI/CD is

an effective method to help individual developers

manage this workload. FPGA tools processing- and

memory-intensive, meaning controlling their computing

resources effectively is challenging. Minor changes to

the code base are often accompanied by long wait times

for builds and tests.

Figure 3

The full stack of an FPGA design from hardware to

software API. Each level also includes the team member

responsible and examples of tools that are used at these

levels.

Hardware
Engineer

Data
Scientist

Figure 4

An example of how developers contribute to an artifact

store to form a single point of truth for all built and

tested binaries. A hardware engineer will commit

changes to repository that is then built and tested and

stored. Data scientists may then use the latest build as a

base for their own development, which they then

subsequently will commit, test and store.

6

Providing developers dedicated-build servers can allow

them to run as shown in Figure 5, which may either be

on-premises or in the cloud. In this model, individual

developers will locally work on code that is then

submitted to a server. The server may then provide a

separate environment for the developer through virtual

machines or containers. This separate environment will

contain the tools and computing resources needed for

the developer to run their submitted code.

Developers are given full responsibility of managing their

personal environment. They must effectively set up,

monitor, and maintain these environments through

scripts. The problem with this system is that developers

must spend time managing their resources. Automating

their personal workflow requires writing scripts. If a

developer wishes to run multiple builds and tests in

parallel, they must manage their provided resources to

do so. All of this distracts from innovation and

performing design space exploration.

Figure 6 shows CI/CD from the perspective of a

developer. Before code is added to the main code base,

it is first built and tested using a local copy of the code

base that the developer has changed. This local copy is

known as the developer branch of the code. If the code

is successfully built and tested, it is merged into the

main branch of code, which is the shared code base.

The significant change of CI/CD over dedicated build

servers is that the infrastructure for builds and tests has

shifted from an individual developer managing their own

environment on to a team-wise responsibility.

Automation and the criteria of acceptance into the main

branch is handled by the group. At a minimum, these

tests are used to ensure that the system remains stable

and working as before, which is referred to as regression

tests. Teams may also decide to use techniques such as

test-driven development, where tests are written before

code is developed and code is only accepted upon

passing of the test.

This lowers the workload of an individual developer

because ensuring that their changes work properly is

now a group responsibility. The infrastructure is

maintained as a group rather than individuals having to

support their own environment, as was the case with

the build server infrastructure. Using CI/CD, developers

no longer need to be concerned about managing their

local computers’ resources, and may instead focus on

the development of the system.

A practical example of CI/CD system
Now that we have established why adopting CI/CD can

benefit FPGA designs, let us look at a practical example

of how we can develop a colour detection system using

CI/CD. Colour detection is a common application within

computer vision and robotics. In this example, we will

assume a team of engineers consists of a hardware

design engineer, a hardware verification engineer, a

firmware engineer and a software developer specialised

in computer vision.

Our colour detection system
The specification for our colour detection system is as

follows:

• Development board: Ultra96-V2 Arm-based,

Xilinx Zynq Ultrascale+ MPSoC development

board.

• OS: Linux

• Input: HDMI

• Output: HDMI

Figure 5

A typical-build server infrastructure that is managed

by developers themselves. Developers commit code

and jobs that run in their own local environment and

is isolated from other environments.

Figure 6

CI/CD workflow from the perspective of an individual

developer.

7

• Acceleration: The image-processing pipeline

shown in Figure 7 is needed to accelerate the

colour detection system. Once a frame from the

HDMI input has been received, it is converted

into the correct colour format. A thresholding

filter is then applied to the image to isolate the

colour that is needed. Finally, the image is

dilated to remove noise.

Figure 7

Colour detection image-processing pipeline.

The team must then break down the system

specification into the high-level features needed at each

level. Figure 8 provides the full system stack and what

each level must include for proper functionality:

• Test architecture: For the first level, the

verification and hardware design engineer must

design a testing architecture that ensures

proper functionality of the hardware shell. The

test architecture may include an IO emulator to

mimic HDMI inputs and outputs, as well pattern

generation to feed in video data. To check the

correct output, the test architecture will also

need to provide a signal check for the outputs

to ensure no signal is malformed. This test

architecture can be developed using System

Verilog with the Vivado Design Suite.

• Hardware shell: The hardware design engineer

must then provide a hardware shell for the

other engineers to develop a system within.

This involves deciding on the necessary IO and

interfaces, such as HDMI, as well as setting up

the CPU and reconfiguration environment on

the SoC. A first version of this may involve using

the pre-provided images for the board. This

hardware shell is developed in Vivado using

Verilog or VHDL.

• Firmware: An embedded Linux OS system must

be placed on the CPU. To do so, firmware

engineers may use tools such as Petalinux that

create a custom OS. These can be pre-loaded

with necessary libraries such as GStreamer or

OpenCV.

• Software API: To implement the colour

detection itself, we can build an image-

processing stream through Vitis Unified

Development environment. It provides HLS

tools for software developers to develop

hardware accelerated systems. This image-

processing stream can then be made into a

kernel through OpenCL that can be exposed to

the application through an API. The colour

detection requires filter modules, a colour

threshold module and a dilation module.

Software developers can make use of pre-

provided hardware acceleration libraries for

these modules, such as the Vitis Vision library,

Figure 8

The full system stack for colour detection. Each level indicates the minimum requirements to perform

the colour detection, as well as the tools used.

8

which can be linked together to form an image-

processing stream.

• Software application: The colour detection

application can be developed in a similar

manner to other software applications, even if a

developer has limited experience with HLS tools

or OpenCL. The software API will expose the

hardware accelerated colour detection system

through an overlay. This allows the software

application development to instead focus on

user experience, through a Graphics User

Interface (GUI) or an external API that can allow

users to call commands from terminal.

Managing development through CI
For our colour detection system development to stay on

target, we will show how CI/CD can be used to manage

it. The CI/CD infrastructure must first be established. We

propose using GitHub as our code repository. For our

orchestration software, we will use open-source Jenkins,

which will allow us to integrate GitHub as well as set up

servers remotely or use on-premises servers for

execution of our builds and tests. For deployment, we

will store the images on our on-premises servers, to be

manually installed on our embedded boards through SD

cards.

How CI aids individual developers

Figure 9

Two CI workflows that build the image-processing

stream. Top: Manually running each task in the pipeline.

Bot: Automating each task in the pipeline through CI.

Each block represents a task: B blocks represent build

tasks, whilst T blocks represent test tasks. Connected

blocks have a dependency on each other. Each colour

represents closely related tasks. Blue: colour conversion

tasks. Yellow: threshold tasks. Orange: dilation tasks.

Green: kernel integration tasks.

Figure 9 shows the workflow that the software

developer will use to develop the image processing

stream. The top workflow shows the task pipeline if the

software developer runs each task manually. The

developer must perform setup, monitoring and

packaging of artifacts manually. This makes running

different tasks at the same time difficult. The bottom

workflow represents how the tasks are run in an

automated pipeline. Crucially, setup, monitoring and

packaging are automated by the CI/CD system, making it

simpler for the programmer to run tasks in parallel.

Tasks with dependencies on each other, such as a build

and test of a module, cannot be run at the same time.

Even with these dependencies, automation can reduce

the build and test time that the developer will need to

undergo, making them more efficient and able to

explore the design space more effectively.

How CI helps manage the team

The continuous nature of CI means teams become

proactive in debugging and meeting system

requirements. Small iterative changes to the codebase,

that are constantly checked, have two major benefits.

The first is that bugs become simpler to track as the

exact version that introduced the bug can be found.

Secondly, performance and other metrics can be

monitored on a fine-grain level. Tests can identify the

impact of a change on the codebase, allowing

developers to react to poorly performing iterations or to

continue pursuing positive changes.

In Figure 10, we show the workflow setup and at the

end, the entire system will be ready for deployment.

Each stage creates a discrete artifact that must be used

on the next level of our stack, creating a chain of

dependencies on which we can base our workflow. Each

stage consists of the same iterative processes:

• The developer creates a feature for the next

iteration, and their code is committed to the Git

repository.

• The orchestration software will then build and

use pre-determined tests to see if the build is

successful. Tests may include proper

functionality or hitting performance criteria.

• On successfully passing tests, the new artifact is

then made available in the artifact store.

Developers may then use this artifact as part of

their testing process.

• The tests are also used to inform the developer

on metrics such as performance, which can

guide the developer on their next iteration.

In this workflow, we will create five artifacts: a testing

architecture; a hardware shell; a Linux OS distribution;

9

and the hardware accelerated colour detection

application. Each artifact has a separate testing

procedure to ensure high-quality code:

• Test architecture: The testing architecture will

consist of a series of modules that can be

imported to place a design under test. Each of

these modules must also be tested to ensure

that they are error free. Common tests will

include correct interfacing and accurate capture

of a design-under-test’s output. Tests at this

stage will be cycle and signal accurate hardware

tests, using assertion-based and coverage tests.

• Hardware shell: The hardware shell will be

reliant on the test architecture modules to build

a testing system. The hardware shell is placed

under test by connecting the pattern generation

module to the input, and the signal check on the

output. Using this, the system can then be

tested, using standard procedure such as

constrained random tests or assertion-based

tests. We may also choose to track both code

and functional coverage, and have a certain

threshold that must be passed. If these tests

pass, the hardware platform is generated.

• Firmware: The firmware requires a description

of the hardware to create a Linux OS image to

use. The OS can be generated through Petalinux,

which also allows us to set up kernels for the IO

and preinstall any required libraries. Testing may

involve correct installation and booting.

• Software API: Vitis requires the OS image to

create acceleration kernels. Individual modules

may be tested for both functionality and

performance data. These modules can then be

integrated into a larger kernel test. At this point,

we can derive the acceleration that is possible

for the colour detection system and gain

important performance measurements such as

throughput and latency.

• Software Application: Finally, the software

application may be tested using conventional

software techniques, such as unit tests and

system tests. The artifacts at this point can then

be combined to form a complete system, ready

for distribution.

Through CI/CD we can establish a workflow that

efficiently builds and tests each level of the colour

detection stack. We also highlight how developers may

integrate standard testing practises at each one of their

levels. Using CI/CD encourages these standard tests to

be integrated into the system as fast as possible, so that

the developers using the latest released artifacts have

confidence in their stability. The work of developers in

different fields can be integrated into a single workflow.

We encourage teams to see how they can adapt their

own processes into an automated process to see how

CI/CD can help improve their time-to-market.

Beetlebox Limited is a company registered in England & Wales with Company Number

11215854 and VAT no. GB328268288

contact@beetlebox.org

2020 Beetlebox Limited

Figure 10

Our workflow for the colour detection system. Each level represents the process needed to produce an artifact

for the next level. Starting from the bottom: the hardware verification engineer will iterate on the code base

and commit that code to the Git repository. The CI/CD system will then build and test this system, and if it

passes, will produce the Test Architecture artifact. The test will be used to inform the developer and provide

feedback for their next iteration. This artifact is needed by the hardware design engineer for their tests. This

forms a chain of dependencies until the entire system is complete.

10

Summary
Through our colour detection system, we provide an

example of how CI/CD can benefit FPGA development.

CI/CD helps individual developers by providing an

infrastructure to automate their builds and tests on,

instead of them individually managing their

environment. The advantages also extend to the entire

team by making it possible to manage large workflows

across multiple levels in the software stack, reducing the

communication overhead and providing a single source

of truth for all artifacts. The use of CI/CD provides

regular automated tests, which can identify system-level

bugs early within the design process and evenly

distribute risk across the project. CI/CD ensures that

FPGA design releases are higher quality and more

predictable. Through these benefits, CI/CD can

accelerate products to market, even as sophistication of

the system increases.

Studio 1.10,
Chester House,
1-3 Brixton Road,
London,
United Kingdom
SW9 6DE

Beetlebox Limited is a company registered in England & Wales with Company Number
11215854 and VAT no. GB328268288

